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Scaling-Up to Systems Biology
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The Law of Mass Action
For a system involving M reactions and N chemical species with ;" reaction
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Detailed Balance

When in equilibrium, the forward and reverse fluxes are equal

J 7 . ,,bj <) o)
N _ 1.0 1 2 N
k+x1 $2 AN =k’ z;'z, TN
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Open, Living Systems
Starting with the original mass-action kinetics

dxz I/j I/j Vj . K,] K,J I<.:j
J 1,72 N J 1 P N
E I{—V Q. 2 R S Al A S JNAD B

the detailed balance conditions can be broken by incorporating external input
and output fluxes
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Michaelis—Menten Enzyme Kinetics
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For enzyme-catalyzed reactions, represented as

S+E:1‘SE—>E—I—P,
k-

we can make the guasi-steady-state assumption that
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Reversible Michaelis—Menten Enzyme Kinetics

For
e w1
S+ E=SE=FE+ P,
k1 k2

we get
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Outline

Background and motivation for the new modeling methods.
The grand canonical model.

Stochastic simulation algorithms.

Stoichiometric constraints-based optimization approaches.
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Stochastic Chemical Kinetics

The mathematical basis for this approach is the discrete-state,
continuous-time Markov process, also known as the (chemical) master
equation approach.

Kurtz (1972) proved, by properly taking the volume of the system into
account, that the deterministic ODE model is the infinite limit of the Markov
chain model.

There are state-tracking approaches, such as the single-molecule NESS
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The Closed Network Model

Consider an irreducible system of monomolecular biochemical reactions
Involving N reactants. The dynamics of a single molecule can be modeled as
a Markov jump process or random walk, where

N
j=1
i

dp;(t)
dt

(pi(t)a;,: — pi(t)ai,;) -
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Closed Network Equilibrium

If the system is closed to its surroundings, it will achieve equilibrium where
each reaction must be detailed balanced. Let 7; represent the probability of
being in state ¢ at equilibrium, then

T _ 45,
i iy

= K.,

and, for a closed loop of reactions 1o — i1 — - -+ — 4, — %0,
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The Grand Canonical Model

Suppose there is an observer doing work on the system by keeping the
number of molecules in state 0 equal to ng and the number in state N + 1
equal to ny 1. The total number of molecules in this system will fluctuate with
the expected number of molecules, (n;(t)), at time ¢ in state ¢ satisfying

N+1

d <7Z‘t(t)> = > (1) a6 — (na(t)) ¢s.5)

JFi
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Variances and Covariances of the Open System

Let (n;)" be the number of molecules in state i when the system is in NESS
and An; = n; — (n;)". It can be shown that the variances and covariances
must satisfy

2) N+1
d((Am Z ) 4+ 2 (An () Anj(t))) g5

.775%
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The Analytic Solution of the Open System

Using
. N+1
d<77;t(t)> _ Z ((n (1)) @6 — (a(t)) qis)
po

we obtain the solution of the chemical master equation for the open system,
which is given by the joint probability
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The Homogeneous System

The nonhomogeneous system of equations can be rewritten as a
homogeneous system of equations by substituting n;(¢t) = An;(t) + (n;)". In
matrix form, the resulting system is written as

d (An(t))
dt

= Q(An(1)),

where
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Correlation Functions and Reaction Fluxes

Using the solution of the homogeneous system, we get the autocorrelation
and cross-correlation functions

(An(t)Any(0)) =€ (ns)"

i
E

(Vire v, ! (m)”)

e
I
—_

(An;(t)Any(0)) =e; (n:)”

7,7

(VJ e VLG (n z>*)'
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A Simple Example

Consider
q0,1 q1,2 q2,3

O0=1=2—73,
a1,0 921

for which we have the master equation

dP(nl, no, t)
dt

= P(n; — 1,n9,t)q0,1m0 + P(n1,n2 + 1,1)g23(n2 + 1)

+ P(n1 + 1, na, t)ql,o(nl + 1)
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A Simple Example

At NESS,
«  qo,1(g2,1 +g2,3)n0
(n1)” =
q1.0(q21+ q2.3) + q1.292.3
* 40,141,270
(no)” =

q1.0(92.1 + G2.3) + q1.2G2.3°
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A Simple Example

The autocorrelation and cross-correlation function are

n *
(An1(0)Any(¢)) = )\<1 _1>)\2 (()\1 +q1,0t+ 6]1,2)€>\2t — (A2t @0+ Q1,2)6A1t)

n *
(Anz(0)Ans(l)) = >\<1 i>)\2 (M +q21+ @23)e™ — M2+ @21 + q2.3)e)

412 <n1>* it Aot
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The Equilibrium Grand Canonical Ensemble

Suppose the source and the sink are one and the same. Let state 0 be that
state and suppose there are N internal states. Then the total number of
particles in the system are given with probability

Q(ﬁa n) e,B,u,n

n!

P(n) «

Y

ne guantum-mechanical canonical partition functi (3. m
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The Equilibrium Grand Canonical Ensemble

The normalizing condition for the grand canonical ensemble yields the grand
canonical partition function

2(8p) = Z —Q(i', n)eﬁ‘m
n=0 ;

— QB




HEUETT, FINAL EXAM

The Equilibrium Grand Canonical Ensemble

The probability that there are n particles in the system is

(U, De™)" _qanern _ (m)™)" _nyes

P(n) = . e

The grand canonical model gives

28
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The Kolmogorov Equations

From the Kolmogorov forward equation

| N+1
d <7let(t)> _ Z ((n;(t)) qj.i — (ni(t)) qi ),
=

we get the associated backward equation

N-+1
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The Grand Canonical Model and Thermodynamics

The substitution allows for a physically meaningful potential function to be
defined as -
wi(t) = Inui(t) = —In—= +In (n;(t)) — Inng
o

and the chemical potential difference for a reaction between states  and j is

(ni(t)) gi.5

Api,j(t) = pi(t) — p;(t) = In = In

(n;(t)) qj.q Jji(t)
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The Reaction Conductance

In terms of the chemical affinity, u(t) = e*(*), we have

Auz’,j (t) _ uz(t) —u, (t) _ <n%(t)> wg <nj (t)> o _ J’i,j(t) — Jj,i(t)ﬂ_o

no7; no7 nNo7mq;,;

In which case
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Analogies to Random Walks

The system
N+1
duz- t ‘
dt( ) - () —w®) @yl Vie{l,2,...,N}
j=0
j#i

ICs: w;(0)=0, Vie{l,2,...,N}

with up(t) = 1 and ux1(¢) = 0 is equivalent to a random walk, where u,;(t) is
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Discussion of the Grand Canonical Model

The grand canonical model provides many important results that can be
useful in studying reaction systems that actively exchange materials with
their surroundings.

The chemical species of a physical system may only be present in small
numbers, which would negate the use of mass action kinetics.

One of the most important results from this model is that the joint probability
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The grand canonical model.
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The Chemical Master Equation

The master equation is the time-evolution equation for the function P(n,t),
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Schematic of the Density Function
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The Gillespie Algorithm
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The Gillespie Algorithm

So choose r; and ro from uniform distribution in the unit interval and
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Testosterone in Men'’s Blood

Approximately 90% to 95% of testosterone in men is produced by the
testes with typical blood testosterone levels in the range of 3 to 10 ng/mL.

These levels have been experimentally observed to oscillate with a period
of about 2 to 3 hours.

An imbalance can cause dramatic changes (mood, acne, and weight).
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The Hypothalmus-Pituitary-Testicular Axis
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The Hypothalmus-Pituitary-Testicular Axis

Neurosecretory cells
of the hypothalamus
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The Hormone Secretion Signaling System

[ Hypothalamus

GnRH

Pituitary
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Experimental Observations

Hypothalamic GnRH neurons
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The Deterministic Model

If we represent the concentrations of GnRH, LH, and T by R(t), L(t), and T(t),
respectively, then a proposed deterministic model of this system is

dR

— = f(T)—b
dL

— =g1 R — by L
dt g1 2

dT’




HEUETT, FINAL EXAM 44

The Deterministic Model

If we represent the concentrations of GnRH, LH, and T by R(t), L(t), and T(t),
respectively, then a proposed deterministic model of this system is

dR

— = f(T)—b
dL

— =g1 R — by L
dt g1 2

ar _




HEUETT, FINAL EXAM 45

History of the Model

Goodwin (1964) first proposed the model to demonstrate oscillatory
behavior in enzymatic control processes.

Smith (1980) studied slight variation involving a Hill coefficient in f(7T').

Murray (1989) suggested using a time-delay in the production rate of 7.

EnC|so and Sontag (2004) proved that the system has a globally stable
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A Stochastic Simulation of Hormone Secretion
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Simulation of hormone secretion for parameter values, A = 1074 K = 1077, by = 0.23,
b, = 0.07,b3 = 0.1, g1 = 0.2618, and g> = 0.9015. Average number of molecules are
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A Stochastic Simulation of Hormone Secretion
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Lomb Spectral Analysis

0.4
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The largest peak corresponds to a frequency of 2.3429 x 10~ * Hz.
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The Switching Behavior
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Approximation Methods

Gibson and Bruck (2000) proposed an approximation for systems in which
some reactions occur much more often than others by reducing the number
of random variables simulated.

Gillespie (2001) introduced the 7-leap methods that make larger time steps
and allow more events to occur within those steps as long as changes in
the event probabilities stay within some tolerance.

Burrage and Tian (2003) attempted to simulate continuous-time,
continuous-state, stochastic-approximation, models driven by Wiener noise
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Discussion of Stochastic Simulations

When we are interested in the effects of intrinsic fluctuations and are not

able to obtain analytic results, we can rely on simulation methods such as
the Gillespie algorithm.

These algorithms provide a more realistic representation of a system than
the deterministic, mass-action equations.

By approaching the hormone model from a different physical basis we saw
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Outline

Background and motivation for the new modeling methods.
The grand canonical model.

Stochastic simulation algorithms.

Stoichiometric constraints-based optimization approaches.
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Stoichiometric Network Theory

Returning to the general mass-action equation for a system of N species and
M reactions

dzi(t) ) S — i) e i aaha
(K] — o) YKz x? . xy — K xy as? .. x )

g=1

we can rewrite the system of equations in matrix form as




HEUETT, FINAL EXAM 55

Flux Balance Analysis

In NESS, the concentrations of the chemical species are not changing and we
have

SJ = —Jeot,

which is known as the flux balance constraint of FBA. Note that this constraint
Is similar to Kirchoff’s current law of electrical circuit theory.
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Energy Balance Analysis

Define p as the N-dimensional vector of chemical potentials, then the
M-dimensional vector of reaction potentials, A, is given by

STu = Ap.

We can define the nullspace matrix K € RM>*(M=N=7) with columns that form
a basis for the nullspace of S, so that SK = 0. Then we have the constraint

TT T
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Energy Balance Analysis

If we define the nonnegative forward and reverse reaction fluxes so that
J=J, — J_, then the reaction potential is

which leads us directly to the second law of thermodynamics, i.e.,
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The Optimization Problem

' 3.3, 3. J A
J7J+a’]rfli]rémt7Ap' f( - Ill)
S.t. SJ+J" =0

K'Ap =0
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Sequential Quadratic Programming

We can solve the problem for any given, smooth, linear or nonlinear,
objective function using a Sequential Quadratic Programming (SQP)
algorithm.

The basic idea of an SQP method is to step toward an optimal solution by
iteratively approximating the problem by quadratic subproblems.

A simple interpretation of an SQP algorithm is to view it as an application of
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The Quadratic Subproblem

Linearizing at the current iterate x;, we get the subproblem

1
mpin §pTHkp + Vfgp

st. Ve p+elxi)=0, ic{l1,2,...,m}

Veixp)'p+ci(xz) 20, ie{m+1,...,n},
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Consider

A Hypothetical Example

A+2B=C
C+D=2A+2B
A+ B=2D

A+C = B+3D

—\

61
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A Hypothetical Example

Using FBA alone to maximize D outpult:

Case 1 Case 2
rxn | J | species | J¢ || rxn J || species | J°
1 |0 A 1 1 0.05 A 10
2 |0 B 0 2 | 10.09 B 20
3 | 1 C 0 3 | 20.17 C 20
4 | 0 D -1 4 9.96 D -90
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A Hypothetical Example

Using FBA and EBA to maximize D output and minimize total energy:

oo [ 3 [ 3. | I | A | J° | species
1| 095| 1363 1456 0067 10| A
2 | 835 5604 4769|0161 20| B
3 [ 1694 |11385| 9691|0161 20| C

4 [1070| 8522 7452|0134 90| D
5 | 32.36 | 143.66 | 111.30 | -0.255 || hdr = 13.83
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Using FBA, EBA, and heat constraint to maximize D and minimize total
energy:

A Hypothetical Example

rxn J J. J_ Ap J¢ | species
1 0.00 | 6.04 | 6.04 | 0.00 | 10 A
2 |10.44 | 1287 | 243 | -1.67 | 20 B
3 | 2133|2212 |0.79 | -3.33 | 20 C
4 9.56 | 11.78 | 2.23 | -1.67 || -90 D

64
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Saccharomyces cerevisiae

Overall, the net reaction of fermentation is the convertion of glucose to ethanol
and carbon dioxide

C6H1206 — 2C2H5OH == 2C02

Under anaerobic conditions, most of the energy from the sugar is
transferred to ethanol and growth of the yeast cells is minimized.

Temperature is an important environmental factor for yeast because above
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Saccharomyces cerevisiae

Glc AT
NAD
cell membrane GAPDH
transport NADH
Gle,, 1,3-BPG

ATP ADP
HK PGK
ADP ATP

Glycogen<7ﬁ‘> Go6P aﬁ Trehalose 3PGA

ATP ADP ;
R GM

F6P 2PGA




HEUETT, FINAL EXAM 67

Saccharomyces cerevisiae

rxn | transport | HK PGl | PFK | ALD | TPI | GAPDH
Vinin 243
Vinaz 0.36 084 | 1.26 | 0.68 | 1.19 | 84 4.4

rxn PGK PGM | ENO | PYK | PDC | ADH

Vmin -4.8 -3.0
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unbranched branched
FBA FBA, EBA, & heat FBA FBA, EBA, & heat

rxn J J J. J_ Ap J J J. J_ A
transport || 0.33 | 0.33 | 1.02 | 0.69 | -971 0.36 | 0.36 | 0.75 | 0.39 | -1659
HK 0.33 1033|102 | 0.69 | -971 0.36 | 0.36 | 0.75 | 0.39 | -1658
PGI 0.33 1 033 | 1.02 | 0.69 | -971 0.30 | 0.30 | 0.70 | 0.40 | -1420
PFK 0.33 1033|102 | 0.69 | -971 0.30 | 0.30 | 0.70 | 0.40 | -1422
ALD 0.33 1 033 | 1.02 | 0.69 | -971 0.30 | 0.30 | 0.70 | 0.40 | -1420
TPI 0.33 | 0.33 | 1.02 | 0.69 | -971 0.23 | 0.23 | 0.64 | 0.41 | -1126
GAPDH 0.65 | 0.65 | 1.21 | 0.56 | -1943 || 0.54 | 0.53 | 0.87 | 0.34 | -2379
PGK 0.65 | 0.65 | 1.21 | 0.56 | -1943 || 0.54 | 0.53 | 0.87 | 0.34 | -2379
PGM 0.65 | 0.65 | 1.21 | 0.56 | -1943 || 0.54 | 0.53 | 0.87 | 0.34 | -2380
ENO 0.65 | 0.65 | 1.21 | 0.56 | -1943 || 0.54 | 0.53 | 0.87 | 0.34 | -2378
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Discussion of Stoichiometric Constraints-Based
Approaches

SNT has been shown to be a very accurate and useful tool for studying
mutant and disease affected organisms.

By combining FBA and EBA constraints, we are certain that the feasible
solutions are mass balanced and thermodynamically realistic.

Using an SQP to solve the optimization problem allows us to combine the
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Outline

Background and motivation for the new modeling methods.
The grand canonical model.

Stochastic simulation algorithms.

Stoichiometric constraints-based optimization approaches.
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Conclusions

The classical methods for modeling biochemical networks are limited in
their power.
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